Example 1: Raw Material Thickness

Wafer Substrates

Fabricated by bonding a GaAs wafer to a supporting substrate and then grinding and polishing it. Used for communications circuits.

Monitoring of substrate thickness during grinding and polishing. In-plane distribution of substrate thickness.

Example 2: Multilayer Film

Semiconductor Epi Film

Multilayer semiconductor film formed on semiconductor substrate.

Example 3: Residual Thickness of Etching

Semiconductor Sensors

Semiconductor sensors employing micromachines. Fabricated using etching technology. ↓ Residual thickness of etching is measured.

Example 4: Structures

Reflective LCD Panels

Cell gap is measured.

Metrology of Film thickness by light

Nondestructive, Noncontact, High speed, and Handy

1. Fringe method

Spectrometer (ultraviolet · visible · near-infrared · infrared) Range: 100nm ~ 100 □m Not feasible for Thin film (<100 nm)

2. Ellipsometry

d: Film thickness

 $\boldsymbol{\theta} \text{:}$ Incidence angle

no: Refractive index

 $\lambda_1,\,\lambda_2$: Wavelength of two adjacent peaks

Classification of Film Thickness

Substrate

- Absorption layer, oxide layer, and diffusion of other gas molecules
- Voids
- Lattice defects such as holes and clusters
- Grain boundary

Geometrical thickness dT / Mass thickness dM / Physical thickness dP

Film Measurement Technique 1: Geometrical Thickness

	Method	Technique
	Mechanical	Contact system Pneumatic micrometry
	Optical	Multiple beam interferometry (MBI) Fringes of equal chromatic order (FECO) interferometry Two-beam interferometry
	Other	Scanning electron microscopy (SEM)

Film Measurement Technique 2: Mass Thickness

	Method	Technique
		Chemical balance
	Magg	Microbalance
	11/1/2010	Torsional balance
		Crystal oscillator
		Colorimetry
		X-Ray fluorescence
	Atomicity	Ion probe
	ESTER.	Radioactivation analysis
		Beta ray back-scattering

Film Measurement Technique 3: Physical Thickness

Method	Technique
	Electrical resistance
Flootrical	Hall voltage
Electrical	Eddy current
	Capacitance
	Interference spectrum
Optical	Polarization analysis
	Light absorption