Reflectivity Calculation Program

This optional program allows calculation of the reflectivity spectrum at any incidence angle from the wavelength distribution
of the sample n and k values. Additionally, for complex samples such as optical components with multilayer films or anti-
reflective coatings, the software can determine the reflectivity spectrum of the whole sample, including the coating.
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D/L?llfilayér Analysis

Substrate: (n)s® (K)s

Multilayer Model Film: (n) ¢ (k) * (d)
n, k, d (n): refractive index
[
. (k): coefficient of extinction

(d): Film thickness

(d) and (n,k) of each layer is determined
| (A, qj)measured — (A, ‘Ij) calculatedl = minimum

using Least square method.




Multilayer Analysis
Thickness
SiO: ultra thin film (~20A) on Si d=23 7A
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Multilayer Analysis
SIN film (~200nm) on Si Thickness d=214.5nm
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JASCO developed a special program for calculating the film thickness and optical constants for each layer of a multilayer film based on the
ellipsometric dispersion parameters (, y)l for the material. A multilayer film model is developed for the sample, the film thickness and optical

constants optimized to minimize the error for the measured values.




Multilayer Analysis

Complex refractive index (n, K) of SIN
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Reflectance analysis of transparent substrates

Measured reflectance and calculated reflectance of a
900 nm quartz film on optical glass (BK7)
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This figure shows the measured reflectance of an approximately 900 nm thick quartz film on optical glass (BK7), the
calculated result using the conventional multi-layer film analysis technique and the calculated result for reflectance
analysis of a thin film on a transparent substrate. The latter technique shows a close match to the actual measurement,
while the conventional technique shows reflectance that is about 4% lower.



Reflectance analysis of transparent substrates
Measured reflectance and fitting result of 900 nm

quartz film on BK7/ glass
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This figure shows the results optimized using the thickness of the quartz film and Cauchy refractive index dispersion.
The results were a refractive index 1.48 at a film thickness of 893 nm at 360 nm and 1.46 at 633 nm.



Analysis of S and P polarization reflectance

Measurement result of 60° incident S and P polarization
reflectance for a 100 nm S10, film on a silicon substrate

= w55 - SIFIERRT B =10lx|
FE REE HES Br0 BR@ ANLTH

D@ =8| S| 2|4 2lo|%| x| 2]

= WESET N FHREEE BE —
fid= ‘ Air = | =22} :I
EAm  Snensy T 1038180m | 7 SRR g
" il o £
6E0° ) l

%R ':II% B T : . e ]

e
%R —1.f‘ I ' - ]
50 a0 1000 1200

600 800
Wavelength [nm]

| L
1000 1200

600 800
Wavelength [nm]

F5EE 0000327143 260~-1200nm, A90-~-270, W0--80, 11000, sinlA’ [DruT 245 A4

This figure shows the measurement result for a 100 nm SiO, film on a silicon substrate. Comparing film thickness to
the wavelength, it is difficult to analyze such thin films with good precision without interference bands in the reflection
spectrum. However, it is possible to determine the thickness and refractive index of a thin film with good precision in a
relatively simple manner, by adding a variable angle absolute reflection measurement system and a polarizer to a
general purpose spectrophotometer. Measurements are then made using an incidence angle near Brewster's angle.



Analysis Example for Tauc-Lorentz Dispersion Model
(Non-Crystalline Thin Films)

Analysis results for approximately 100 nm thick amorphous
silicon deposited on a glass substrate
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Impurity concentration dependency of optical constants in
semiconductors

Carrier concentration dependence of optical constants for n-type silicon.
Carrier concentration (3 x 107 cm™; 1 x 108 cm™; 3 x 10'8 cm™3)
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To measure the film thickness of impurity-doped semiconductors with good precision using an optical technique requires
accurate optical constant values. Furthermore, the doped impurity concentration is extremely important for the
characteristics of semiconductors. This figure shows the carrier concentration dependence of optical constants for n-type
silicon. The large contribution of the free carrier to the optical constants can be seen from the near-infrared region to the
infrared region.



Impurity concentration dependency of optical constants in
semiconductors

Dependence of optical constants on carrier concentration for GaAs (calculated
values). Carrier concentration (5 x 10" cm™3; 5 x 10'® cm™?)
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The contribution of the free carrier to conductivity is given by a Drude equation and with polar compound
semiconductors, such as GaAs and InP, conductivity in the infrared region is represented by the contribution of lattice
vibrations and a Drude equation. If the lattice vibration and the various parameters in the Drude equation can be
determined from a variety of optical measurements, such as reflectance, the wavelength dependence of optical constants
for semiconductor thin films doped with impurities can be determined and higher precision film thickness evaluation will
be possible. This figure shows the results of simulating carrier concentration dependence for GaAs.



Optional sample stage
AX(Q-100 Automatic X-0 mapping stage

Sample size: 3 to 8-inch round or rectangular sample
Sample thickness: Max. 10 mm
Holding method: Held upright by vacuum suction




Mapping Measurement (Option)

Takes advantage of the PEM system’s high speed to enable film thickness and refractivity distribution measurement within a
maximum of ¢8 inches of sample surface. The mapping measurement program offers display features including 3-D representation,
contour map, and color map. The figure shows the thickness distribution of silicon oxide on a four-inch substrate. An average film
thickness and average refractive index of 902A and 2.01, respectively, is obtained. The film is thicker towards the center and thinner
toward the periphery.

S1;N, Film on Si
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Optional AXQ-100 Automatic X-0 mapping stage includes
above mapping measurement software.



Thickness Map
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S3N4 Film Refractive index
Contour Map




Optional sample stage

MDR-102 Birefringence measurement stage

Sample size: 50 mm x 80 mm to 2-inch round or rectangular sample
Sample thickness: Max. 5 mm




Birefringence of Optical material and Film

Residual strain in Optical glass
Optical films for LCD(Liquid Crystal Display)

Photoelasticity, Birefringence, Polarization characteristics
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Birefringence Mapping
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LB, &
- MW-302 Multiple Incidence Angle Measurement

‘Conventional measurement using a single wavelength and single incidence angle can only find two parameters (for
instances, n and d) at one time. This makes analysis difficult when k is not 0, even in a single layer. Our ellipsometers,
however, offer you the power to measure multiple incidence angles to find parameters n, k, and d for film from the A,
W and w incidence angle dependency in this kind of absorption film. The figure to the right shows a measurement
example for Ge,Sb,Tes. After measuring in the incidence angle range between 60 and 50 degrees in 0.5 degree steps
at a wavelength of 800 nm, the findings indicate a film thickness of 520.6 A, refractive index of 4.2791, and extinction
coefficient of 4.0025.
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MW-304 A-W Sensitivity Simulation

By postulating n, k, and d for the sample to be measured, and then parametizing the incidence angle and measurement wavelength
and simulating changes in measurement accuracy, it is possible to calculate the optimum wavelength and optimum incidence angle
and check the appropriateness of the film thickness measurement conditions.
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L
Optioﬁal sample stage

PES-105 Photoelastic measurement stage

Sample size:
50 mm x 60 mm film sample




Photoelastic Constant Measurement

Setting up the M-200 series at an incidence angle
of 90° allows you to use the unit as a transmission
ellipsometer, making possible photoelastic constant
measurement. Applying tension to a film sample
evens out the axis of orientation of the
macromolecules forming the film, and the amount
of retardation varies in proportion to the strength
applied. By measuring the strength applied and the
amount of retardation, it is possible to find the
photoelastic constant from the relationship between
those two values. Measurement uses a transmission
stage for photoelastic measurement and a
photoelastic constant measurement program.
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Photoelastic Constant Measurement (Option )

Phase difference vs tensile force Phase difference spectra

=[] x| ; s - = x|
741} M =
SEHS aDEEEEA 2]
No. [GERM | E
-20 1 1657 <
K 2 |33.78
_aq X3 8026 -30
—aF
Disltaldeg] ~40[- Deltaldeg]
-50
-50 |
g |
LE L 1 L EDD 400 500 600 700 800
a0 20 40 al 70 ‘Wavelength (nm]
Force [N] -
Mo [y [3ERM No [ [ EEnm |
FLfal [EEGm) [ PEGoett, [ A74sb | B 1657 1 400
D) 400 -0.09 —41.99 H: 378 2 500
= 500 -007 -3467 3 8026 3 600
4 EO0 |-005 |-2941 4 EL0]
[ 700 -0.04 -2651 5 200
[} 300 -012 -47.67 8 800
a a00 002 -2188
(SHERE A~k [ FEREERRAOHL [ BN AHEES ST |
B Aot | R ATl 3N itgESSo b7

Optional PES-105 Photoelastic
measurement stage includes above
software.



Photoelasticity of films (1)

Phase difference vs tensile force
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Photoelasticity of films (2)

Phase difference spectra
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Optional sample stage
MXY-101 Manual X-Y stage

Sample size: 20 to 100 mm round or rectangular sample

Minute movement distance: + 50 mm horizontally and 50 mm vertically
Sample thickness: Max. 10 mm

Holding method: Held upright by sample holder fixture




Optional sample stage
VCS-103 Absorption stage

Sample size: 10 mm x 10 mm to 2-inch round or rectangular sample
Sample thickness: Max. 10 mm
Holding method: Held upright by vacuum suction




Optional sample stage
ADR-102 Anisotropy measurement stage

Sample size:
40 mm x 40 mm to 50 mm x 60 mm film sample
100 mm x 100 mm t=1 to 5 mm Luquid crystal cell




Time-Resolved Measurement of Liquid Crystal

ELC-300 Spectroellipsometer for liquid crystal
time-resoluved measuremet




Time-Resolved Measurement of Liquid Crystal

Generally, the behavior of liquid crystal molecules in the vicinity
orientying layer is different from the behavior of bulk liquid crystal.
It is said to be influenced by an anchoring effect that works between
the orientation film and liquid crystal molecules. Measuring the
electric field response of the liquid crystals is indispensable to
understanding that orientation mechanism.

The M-200 series enables time-resolved analysis of liquid crystal
using the high-speed data acquisition of its PEM dual lock-in system.

The figure to the right shows an example of the dynamic electric
field response of nematic liquid crystal bulk and crystals near the
boundary. The measurement used a SCB liquid crystal cell
(orientation: parallel: cell thickness: 8.17pm) doped with 6wt% p-
dimethylaminoazobenzene. First the bulk liquid crystal’s electric
field response in a transmission configuration is measured at a
wavelength (698 nm) where the dye is transparent, and then the
electric field response of the liquid crystal near the boundary is
measured in a reflective configuration (dye-doped reflection method*)
at the DAB absorption peak wavelength (419 nm). If you compare
the time-resolved measurement results for the bulk liquid crystal and
liquid crystal near the boundary as shown in the figure, you will see
that their electric field responses are quite different.

* The dye-doped reflection method makes it possible to suppress the
light reflected from a liquid crystal cell’s back surface and then
measure the electric field response of the liquid crystal near the
anchoring interface by doping dye in the liquid crystal cell and then
applying the reflection ellipsometry at the absorption wavelength. -

1)Tadokoro, Fukazawa, and Toriumi. Preliminary Draft of the 22nd
Panel Discussions on Liquid Crystals, 1AO6 (1996).

2)Ono, Akabane, Kimura, Tadokoro, Akao, and Toriumi.
Preliminary Draft of the 44th Spring Term Applied Physics Society,
30a-SNL-11 (1997).

3)Tadokoro, Akao, Kimura, Akabane, Ono, and Toriumi.
Preliminary Draft of the 44th Spring Term Applied Physics Society,
30a-SNL-12 (1997).
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Stages are available for a very wide range of samples.
Contact us for more information and discuss your
own sample requirements




